KRUSTY Integral Experiments, Modeling & Stability

March 2016

Jeffery Goettee, James Jurney, Robert Kimpland & Steven Klein

Los Alamos National Laboratory

Advanced Nuclear Technology Group (NEN-2)

Manufacturing Science & Engineering (MET-2)

This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy

Purpose

- Refine predicted performance through integral experiments focused on reducing uncertainties in parameters
 - Reactivity coefficients and cross sections of fuel, BeO reflectors, vessels, and other components across operating temperature range
 - Temperature and mechanical response of components as function of core temperature
 - Thermal reactivity feedback of core, reflector and cooling mechanisms
 - Sensitivity of performance to physical parameters and configuration
 - Dynamics including start-up and off-normal events
- Refine dynamic models as experimental data becomes available
 - Verify and ultimately validate predicted steady-state operation
 - Estimate system response to dynamic events such as start-up and off-normal events
 - Demonstrate theoretical stability of the system

Experimental Campaign – Core Heating

Core heating (impedance or inductive)

- Impedance method supplies electric current directly to uranium core; would be mounted in hollow center of the core; through vacuum vessel electrodes; power controller supply for required seven (7) kilowatts to heat to 800°C (1472°F)
- Inductance heating through coupled energy through hollow center; efficiencies require eleven (11) kilowatts to heat.

Impedance Concept

Inductance Concept

Core Heating – Examples

Many configurations possible

Support of manufacturing and experimental

operations

Zero-Power Critical Experimental Concept

- Establish Zero Power throughout operating temperature range (20°C 800°C)
- No vessel, heat pipes or other structures required
- Potential for smaller scale experiments involving only BeO

Critical Experiments – Full Configuration

Mounted on Comet Critical Assembly

- Repeat zero-power experiments with sub-critical heating to examine system performance
- Perform selected off-normal events
- Repeat temperature profile at power

Critical Experiments – Safety, Security & Operational Issues

- 72 hours continuous operation
- Excess reactivity (~\$3.00 versus current \$0.80 limit)
- Operations with vacuum chamber
 - Determination of preoperational checks
 - Monitoring requirements
 - Actions arising from breach
- Temperature of operation
 - Monitoring requirements
 - Limits
- Handling and disposition of fission gasses
 - Exhaust or trap? (Environmental Impact Statement determination)
 - If exhaust determine operational mode of HVAC system
- Effects of reflector cooling, material sweep, and potential HEPA filtration

Dynamic System Simulation (DSS)

- Coupled nuclear kinetics and thermo-hydraulics with expected reactivity feedback
- Startup, transition to steady-state and off normal events modeled
- Current model uses generic heat transfer mechanism

\$1.00 insertion (Detail)

DSS with Off-Normal Event Response

\$0.50 Reactivity Step

100°C Saturation Temperature Step

DSS Off-Normal II

Temperature Oscillation

Loss of Heat Pipe Function

Stability Model – Nyquist Plots

- Higher power results in wider stability margin
- No positive zeros in Open Loop Transfer Function
- Does not encircle -1

Model is unconditional stable in the linear approximation

Stability Model – Bode Plots

Amplitude – Top Frequency – Bottom

- Response is benign
- No discontinuities
- Consistent with Nyquist conclusions

Stability Model – Nichols Plot

- Shows wide stability margin (~75°)
- Result consistent with Nyquist

Analysis of Transfer Function Stability

- Bethe Criteria No infinite resonance in Bode Plots
- Nyquist Criteria Number of clockwise encirclements of 1- plus the number of right hand plane poles is zero (transfer function has not positive poles)
- Nichols Criteria One sheeted full Nichols plot of the transfer function does not intersect the point (-180, 0 db)

These are necessary and sufficient to establish stability of the model in the linear approximation

Bethe criteria is necessary for non-linear system stability

Conclusions and Recommendations

- Proposed experimental campaign, including zero power critical over full temperature range will minimize uncertainties in important parameters
- Experiments at power will demonstrate system functionality and operability
- Dynamic System model establishes basis for operation and system stability; however, generic heat transfer mechanism used in current model; improvements to be made once experimental data available
- Experimental results may be used to refine model to provide an operational tool

